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Overview

How many components should we include in our model?

• Too few: under-�tting and large residuals.

• Too many: over-�tting and poor out of sample prediction.

How do we choose?

• X variables.

• Instrumental Variables.

In these notes we'll talk about these in the context of linear
regression. (ESL Ch 3)
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When do we have too much data?

• On the internet!

• Hedonics: What really determines the price of your house?

• Prediction: What really determines loan defaults?

• Consideration Sets: How many products do consumers
really choose among on the shelf?

• What elements of �nancial �lings really matter?
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What we teach undergrads

Traditional ways to select the number of components (p) in a
model:

R
2

= 1− SSR(p)/TSS − SSR(p)/TSS · p

N − p− 1

AIC(p) = ln

(
SSR(p)

N

)
+ (p+ 1)

2

N

BIC(p) = ln

(
SSR(p)

N

)
+ (p+ 1)

lnN

N

• Commonly employed in macroeconometric or time-series
context for things like selecting lags of an autoregression

yt = α0 +

p∑

k=1

αkyt−k + εt
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These aren't all that helpful in
applied micro

• Rely on LRT and a bunch of assumptions (see backup).
No clear "best" method.

• Only make sense for "nested" models
• Should you include x1 and x2, or just x1?
• Not should you include x2 or x3?

• Some tests (Cox, Vuong) can handle non-nested case, but
rarely used
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Back to the real world...

• We have some theoretical benchmark which lets us discern
which of two model we prefer (under certain assumptions).

• In practice we often start with a functional form like:
yi = β0 +

∑p
k=1 βkxi,k + εi

• Which x's do we include?

• Which x's do we leave out?

• It is not clear that BIC/AIC or Vuong test tells us what we
should do in practice.

• Helpful to review what we're really getting out of
multivariate regression. [Much of this section taken from
ESL Ch 3]
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Univariate Regression

• Consider a univarite model (with no intercept)

Y = Xβ + ε

• Let 〈x, y〉 =
∑N

i xiyi be the inner product between these
two variables in our sample.

• Then the least squares estimate and residuals are

β̂ =
〈x, y〉
〈x, x〉

r = y − xβ̂
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What about the case of multiple
regression?

• Suppose we had inputs x1, x2, ..., xp

• If they are all orthogonal, ie 〈xj , xk〉 = 0, we can show
that estimates can be recovered using the exact same
univariate procedure.

• Since they're orthogonal, including them has no impact.

• Outside of controlled experiments, this is not going to be
applicable.
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OLS with correlated inputs

• Imagine if we include an intercept along with our x of
interest.

• Then the least squares estimate becomes

β̂ =
〈x− x̄, y〉
〈x− x̄, x− x̄〉

• Note that x− x̄ are just the residuals from a projection x
on to our x0 = 1
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Getting back to orthogonality

• This suggests a simple procdure

1 Orthogonalize x1 by projecting it onto x0

2 Regress y onto this residual z1 to get β̂1

• This generalizes to the case of p inputs, where for each xp
you project onto the residuals from the previous p− 1 x's.

• Unless we are running regressions by hand this doesn't
seem tremendously helpful.

• However, in practice this is often what your software does!
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Gram-Schmidt/QR Decomposition
I

1 Let x0 = z0 = 1

2 For j = 1, 2, . . . p: Regress xj on z0, z1, . . . , zj−1 to give
you γ̂jl = 〈 zl, xj〉/〈 zl, xl〉 and residual

zj = xj −
∑j−1

k=0 γ̂kjzk.

3 With your transformed orthogonal basis z you can now
regress y on zp one by one to obtain β̂p.
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Gram-Schmidt/QR Decomposition
II

What does this do?

• The resulting vector β̂ has been adjusted to deliver the
marginal contribution of xj on y after adjusting for all x−j .

• If xj is highly correlated with other xk's then the residual
zj will be close to zero and the coe�cient will be unstable.

• This will be true for any variables xl within a set of
correlated variables.

• We can delete any one of them to "resolve" this issue.

• However we should pause to appreciate that our estimate,
and its stability, is mechanically linked to the other xs we
do or don't include.
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*QR Decomposition (Technical
Details)

QR Decomp has a matrix form which regression software uses:

X = ZΓ

= ZD−1
︸ ︷︷ ︸

Q

DΓ︸︷︷︸
R

β̂ = R−1Q′y

ŷ = QQ′y

• Z is the matrix of the orthogonalized residuals zj 's.

• Γ is upper triangular matrix with entries γ̂kj
• D is diagonal matrix with entries ||zj ||.
• Q is N × ((p+ 1) orothogonal matrix Q′Q = I

• R is (p+ 1)× (p+ 1) upper triangular matrix.
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What happens in practice?

What are people likely doing in practice:

• Start with a single x variable and then slowly add more
until additional x's were insigni�cant

• Start with all possible x variables and drop those where
t-statistics were insigni�cant.

• These procedures actually make some sense if the columns
of X are linearly independent or orthogonal.

• In practice our regressors are often correlated (sometimes
highly so).
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Subset selection

• Least squares have some undesirable properties
• Poor prediction: They are low bias but high variance. By

tempering some of the large coe�cients, might improve

prediction
• Interpretation: Sometimes we just want to know the main

factors explaining variation in the data.

• A natural alternative is to restrict models to subsets of the
full x's.

• If you have K potential regressors you could consider all
2K possible regressions.

• Or you could could consider all
(
K
P

)
possible combinations

with p parameters.
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Minimizing SSR: all possible
regressions

58 3. Linear Methods for Regression
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FIGURE 3.5. All possible subset models for the prostate cancer example. At
each subset size is shown the residual sum-of-squares for each model of that size.

cross-validation to estimate prediction error and select k; the AIC criterion
is a popular alternative. We defer more detailed discussion of these and
other approaches to Chapter 7.

3.3.2 Forward- and Backward-Stepwise Selection

Rather than search through all possible subsets (which becomes infeasible
for p much larger than 40), we can seek a good path through them. Forward-
stepwise selection starts with the intercept, and then sequentially adds into
the model the predictor that most improves the fit. With many candidate
predictors, this might seem like a lot of computation; however, clever up-
dating algorithms can exploit the QR decomposition for the current fit to
rapidly establish the next candidate (Exercise 3.9). Like best-subset re-
gression, forward stepwise produces a sequence of models indexed by k, the
subset size, which must be determined.

Forward-stepwise selection is a greedy algorithm, producing a nested se-
quence of models. In this sense it might seem sub-optimal compared to
best-subset selection. However, there are several reasons why it might be
preferred:
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Forward Stepwise Regression

Consider the following greedy algorithm

1 Start with an empty model and add a constant y.

2 Then run K single-variable regressions, choose the xk with
the highest t-statistic call this x(1).

3 Now run K − 1 two variable regressions where the
constant and x(1) and choose x(2) as regression where xk
has the highest t-statistic.

4 Now run K − 2 three variable regressions where the
constant and x(1), x(2)

5 You get the idea!

We stop when the xk with the highest t-statistic is below some
threshold (often 20% signi�cance).
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Backwards Stepwise Regression

1 Start with an full model.

2 Remove the x variable with the lowest t-statistic. Call this
x(k).

3 Re-run the regression without x(k).

4 Repeat until the smallest t-statistic exceeds some
threshold.
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Comparison

• Backwards and fowards stepwise regression tend to give
similar choices (but not always).

• Everything is trivial if X's columns are orthogonal
(computer has some tricks otherwise- QR).

• Forward stepwise works when we have more regressors than
observations K > N .

• I proposed the t-stat here but some packages use AIC/BIC
as the criteria.

• We should also be careful to group dummy variables
together as a single regressor.

• These are implemented in step in R and stepwise in
Stata.

• We probably want to adjust our standard errors for the fact
that we have run many regressions in sequence before
arriving at our model. In practice not enough people do
this!
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(Incremental) Forward Stagewise
Regression

As an alternative consider:

1 Start with r = y and (β1, . . . , βp) = 0.

2 Find the predictor xj most correlated with r.

3 Update βj ← βj + δj where δj = ε · sign〈r, xj〉.
4 Update r ← r − δj · xj and repeat for S steps.

• Alternative δj = 〈r, xj〉
• We can continue until no regressors have correlation with
residuals

• This is very slow (it takes many many S).

• Sometimes slowness can be good � in high dimensions to
avoid over�tting.
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Stepwise selection proedures

3.3 Subset Selection 59

• Computational; for large p we cannot compute the best subset se-
quence, but we can always compute the forward stepwise sequence
(even when p≫ N).

• Statistical; a price is paid in variance for selecting the best subset
of each size; forward stepwise is a more constrained search, and will
have lower variance, but perhaps more bias.
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)
−
β
||2

Subset Size k

FIGURE 3.6. Comparison of four subset-selection techniques on a simulated lin-
ear regression problem Y = XTβ+ ε. There are N = 300 observations on p = 31
standard Gaussian variables, with pairwise correlations all equal to 0.85. For 10 of
the variables, the coefficients are drawn at random from a N(0, 0.4) distribution;
the rest are zero. The noise ε ∼ N(0, 6.25), resulting in a signal-to-noise ratio of
0.64. Results are averaged over 50 simulations. Shown is the mean-squared error
of the estimated coefficient β̂(k) at each step from the true β.

Backward-stepwise selection starts with the full model, and sequentially
deletes the predictor that has the least impact on the fit. The candidate for
dropping is the variable with the smallest Z-score (Exercise 3.10). Backward
selection can only be used when N > p, while forward stepwise can always
be used.

Figure 3.6 shows the results of a small simulation study to compare
best-subset regression with the simpler alternatives forward and backward
selection. Their performance is very similar, as is often the case. Included in
the figure is forward stagewise regression (next section), which takes longer
to reach minimum error.
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Penalized Regression

Suppose we �t a regression model and penalized extra variables
all in one go, what would that look like?

β̂ = arg min
β


1

2

N∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑

j=1

|βj |q



• We call λ the regularization parameter.

• The penalty term λ
∑p

j=1 |βj |q as penalizes models where
β gets further away from zero.

• Similar to placing a prior distribution on βj centered at 0.

• Important: We de�nitely want to standardize our inputs
before using penalized regression methods.
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What Penalty Function?

• Usually you �x q and then look at how estimates respond
to γ.

• There are two famous cases q = 1 (Lasso) and q = 2
(Ridge) though in practice there are many possibilities.

• We can choose λ in a way that minimizes expected
prediction error (EPE).

• Recall EPE(λ) = ExEy|x([Y − g(X,λ)]2|X).

• In practice most people look at out of sample prediction
error rate on a cross validated sample.
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Ridge Regression

A popular option is the q = 2 case

β̂Ridge = arg min
β


1

2

N∑

i=1

(yi − β0 −
K∑

j=1

xijβj)
2 + λ

K∑

j=1

|βj |2



• Penalty is L2 norm on β.

• Can re-write as a constriant
∑K

j=1 |βj |2 ≤ s
• β̂Ridge = (X ′X + λI)−1X ′Y .

• If X is orthonormal then β̂Ridgej = β̂j/(1 + λ)

• In words: everything gets dampened by a constant factor λ
(we don't get zeros).

• Adding a constant to the diagonal of (X ′X) ensures that
the matrix will be invertible even when we have
multicollinearity.
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What is Ridge Doing?

Just like we can diagonalize (some) square matrices, we can
take the singular value decomposition (SVD) of any matrix X
that is N × p

X = UDV′

• U,V are N × p and p× p orthogonal matrices (U spans
the column space, and V spans the row space of X)

• D is a diagonal matrix p× p with elements corresponding
to the singular values of X.

• If X is a square, diagonalizable matrix the singular values
are equal to the eigenvalues.
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OLS vs Ridge

Can write the least squares solution as

Xβ̂ols = X(X′X)−1X′y = UU ′y.

• U′y maps y into the orthonormal basis U.

• This looks a lot like QR except that we have chosen a
di�erent basis.

And the Ridge solution is:

Xβ̂ridge = X(X′X + λI)−1X′y = UD(D2 + λI)−1DU′y

=

p∑

j=1

uj
d2
j

d2
j + λ

u′jy

• Same change of basis. Now we shrink each component by
d2
j/(d

2
j + λ).
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OLS vs Ridge

Can write the least squares solution as

Xβ̂ols = X(X′X)−1X′y = UU ′y.

• U′y maps y into the orthonormal basis U.

• This looks a lot like QR except that we have chosen a
di�erent basis.

And the Ridge solution is:

Xβ̂ridge = X(X′X + λI)−1X′y = UD(D2 + λI)−1DU′y

=

p∑

j=1

uj
d2
j

d2
j + λ

u′jy

• Same change of basis. Now we shrink each component by
d2
j/(d

2
j + λ).
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What is Ridge Doing? II

• Ridge is shrinking the OLS cordinates of y by d2
j/(d

2
j + λ)

• This will have the biggest impact on small dj . What does
that mean?

• Consider the sample variance S = XTX/N

• It has eigen decomposition XTX = VD2VT, and the
eigenvectors vj are the principal components directions of
X.

• First component (largest eigenvalue) is z1 = Xv1 = u1d1.

• Variance is V ar(z1) = V ar(Xv1) =
d21
N (z1 is �rst

principal component of X).

• So this is telling use the ridge is placing more weight on
directions in the columnspace of X that have larger sample
variance
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Principal Components
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Ridge Path

3.4 Shrinkage Methods 65
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FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as
the tuning parameter λ is varied. Coefficients are plotted versus df(λ), the effective
degrees of freedom. A vertical line is drawn at df = 5.0, the value chosen by
cross-validation.

30 / 82



Model
Selection

Richard L.
Sweeney

Intro

Orthogonality

Subset
Selection

Shrinkage

Ridge

LASSO

Dimension
Reduction

Conclusion

Examples

Trade

Crime

References

Backup

Info criteria

LASSO Regression

β̂LASSO = arg min
β


1

2

N∑

i=1

(yi − β0 −
K∑

j=1

xijβj)
2 + λ

K∑

j=1

|βj |




• Penalty is L1 norm on β.

• Can re-write as a constriant
∑K

j=1 |βj | ≤ s
• If X is orthonormal then β̂LASSOj = sign(β̂j) · (|β̂j | − λ)+

• In words: we get coe�cients that are closer to zero by λ,
but coe�cients within λ of zero are shrunk to zero. It thus
produces models that are sparse.
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LASSO vs Subset Selection

Instead of a discrete parameter such as the number of lags p we
can continuously penalize additional complexity with λ.
But... is choosing λ any easier than choosing p?

• We call λ the regularization parameter.

• We can choose λ in a way that minimizes expected
prediction error (EPE).

• Recall EPE(λ) = ExEy|x([Y − g(X,λ)]2|X).

• In practice most people look at out of sample prediction
error rate on a cross validated sample.
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70 3. Linear Methods for Regression
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotted versus s = t/

∑p
1 |β̂j |. A vertical line is drawn at s = 0.36,

the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
and so are computed only at the points displayed; see Section 3.4.4 for details.
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LASSO vs Ridge

3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X. M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)
|β̂(M)|

λ

Best Subset Ridge Lasso

β̂ β̂2
. .β

1

β 2

β
1

β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.
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What is the point?
Ridge:

• Ridge doesn't provide sparsity which can be a good thing.

• It is most helpful (relative to OLS) when X's are highly
correlated with one another.

• OLS can set large but imprecise coe�cients when it cannot
disentangle e�ects.

LASSO:

• LASSO is useful for variable/feature selection.

• People sometimes use LASSO to choose components and
then OLS for unbiased coe�cient estimated.

We can actually combine them using elastic net regression:

P (λ1, λ2, β) = λ1

K∑

j=1

|βj |+ λ2

K∑

j=1

|βj |2
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LASSO vs. Ridge
3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X. M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)
|β̂(M)|

λ

Best Subset Ridge Lasso

β̂ β̂2
. .β

1

β 2

β
1

β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.
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Other Extensions

• Grouped LASSO for penalzing groups of coe�cients at
once (like �xed e�ects)

• Relaxed LASSO run LASSO to select coe�cients and then
run a non-penalized subset regression or LASSO with a less
stringent penalty on the subset. (Here CV tends to pick a
less strong penalty term λ leading to less shrinkage and
bias).

• SCAD: Smoothly Clipped Absolute Deviation: do less
shrinkage on big coe�cients but preserve sparsity

dJa(|beta, λ)

dβ
= λ · sgn(β)

[
I(|β| ≤ λ) +

(aλ− |β|)+

(a− 1)λ
I(|β| > λ)

]

• Adaptive LASSO uses a weighted penalty of the form∑p
j=1wj |βj | where Wj = 1/|β̂j |ν using the OLS estimates

as weights. This yields consistent estimates of parameters
while retaining the convexity property.
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LAR: Least Angle Regression

Consider this alternative to Forward Stagewise Regression:

1 Start with r = y − y and (β1, . . . , βp) = 0. (Standardize
�rst!)

2 Find the predictor xj most correlated with r.

3 SLOWLY move βj from 0 to its least-squares estimate

4 Update r ← r − βj · xj .
5 Keep moving xj in same direction until xk has as much
correlation with updated r,

6 Continue updating (βj , βk) in direction of joint
least-squares coe�cients until some other competitor xl
has as much correlation with r.

7 Continue until all p predictors have entered. After
min[N − 1, p] steps we arrive at full OLS solution.

• Optional: If a current least-squares estimate hits zero drop
it from the active set and re-estimate the joint least
squares direction without it.
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LAR: Least Angle Regression

Why do we need LAR?

• It turns out that with the optional step from the previous
slide: LAR gives us an easy algorithm to compute the
LASSO estimate.

• Actually it does even better � it gives us the full path of
LASSO estimates for all values of λ!

• This is actually a relatively new result.
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LASSO vs LAR

3.4 Shrinkage Methods 75
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FIGURE 3.14. Progression of the absolute correlations during each step of the
LAR procedure, using a simulated data set with six predictors. The labels at the
top of the plot indicate which variables enter the active set at each step. The step
length are measured in units of L1 arc length.
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FIGURE 3.15. Left panel shows the LAR coefficient profiles on the simulated
data, as a function of the L1 arc length. The right panel shows the Lasso profile.
They are identical until the dark-blue coefficient crosses zero at an arc length of
about 18.
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Overall Comparison
78 3. Linear Methods for Regression
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FIGURE 3.16. Comparison of LAR and lasso with forward stepwise, forward
stagewise (FS) and incremental forward stagewise (FS0) regression. The setup
is the same as in Figure 3.6, except N = 100 here rather than 300. Here the
slower FS regression ultimately outperforms forward stepwise. LAR and lasso
show similar behavior to FS and FS0. Since the procedures take different numbers
of steps (across simulation replicates and methods), we plot the MSE as a function
of the fraction of total L1 arc-length toward the least-squares fit.

adaptively fitted to the training data. This definition is motivated and
discussed further in Sections 7.4–7.6.

Now for a linear regression with k fixed predictors, it is easy to show
that df(ŷ) = k. Likewise for ridge regression, this definition leads to the
closed-form expression (3.50) on page 68: df(ŷ) = tr(Sλ). In both these
cases, (3.60) is simple to evaluate because the fit ŷ = Hλy is linear in y.
If we think about definition (3.60) in the context of a best subset selection
of size k, it seems clear that df(ŷ) will be larger than k, and this can be
verified by estimating Cov(ŷi, yi)/σ

2 directly by simulation. However there
is no closed form method for estimating df(ŷ) for best subset selection.

For LAR and lasso, something magical happens. These techniques are
adaptive in a smoother way than best subset selection, and hence estimation
of degrees of freedom is more tractable. Specifically it can be shown that
after the kth step of the LAR procedure, the effective degrees of freedom of
the fit vector is exactly k. Now for the lasso, the (modified) LAR procedure
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Other Data Reduction Techniques

We have other data reduction techniques with a long history in
Econometrics

• Principal Components

• Factor Analysis

• Partial Least Squares
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Principal Components

Suppose we have a very high dimensional X where we have a
high degree of correlation among the components xj .

• We can start by computing the appropriate correlation
matrix C = E[X̃ ′X̃] where X̃ denotes we have
standardized each column xj to have mean zero and
variance 1.

• Diagonlize C via the eigen-decomposition V −1CV = D
where D is the diagonal matrix of eigenvalues.

• Sort D and the corresponding columns of V in decreasing
order of the eigenvalues dj .

• Choose a subset of m < K eigenvalues and eigenvectors
and call that Vm and λm

• Compute transformed data: Zm = VmX̃ which is of
dimension N ×m instead of N ×K.
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Principal Components

• If m� K then we can substantially reduce the dimension
of the data.

• The idea is to choose m so that (Z ′Z) spans
approximately the same space that (X ′X) does.

• This works because we use the principal eigenvectors
(those with the largest eigenvalues).

• The �rst eigenvector explains most of the variation in the
data, the second the most of the remaining variation, and
so on.

• You may also recall that eigenvectors form an orthonormal
basis, so each dimension is linearly independent of the
others.

• As eigenvalues decline, it means they explain less of the
variance.
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Principal Components

Output from software will inlcude

• Coe�cients: these transform from X → Z

• Score: these are the transformed Z's

• Latent/Eigenvalue: the corresponding Eigenvalue

• Explained/Cumulative: cumulative explained variance∑m
j=1(λj/

∑
k λk)

• Stata: pca, Matlab: pca, R/stats: princomp.
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Principal Components

How many components?

• Choose # of components by the eigenvalues or % of
variance explained

• Common cuto�s are 90-95% of variance.

• Eigenvalue based cuto� rules (only take eigenvalues > 1).

• Most common method is to eyeball the scree plot.
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Principal Components
• We can run a regression on principal components Z's and
then recover the betas of the X's

ŷpcr(M) = y1 +

M∑

m=1

θ̂mzm

• Because principal components are orthogonal we can �nd
coe�cients using univariate regression
θ̂m = 〈zm,y〉/〈zm, zm〉.

• We can recover the x coe�cients because the PCA is a
linear transformation:

β̂PCR =

M∑

m=1

θ̂mvm

• If M = P (we use all components) then PCR = OLS.
• If M < P then we discard the p−M smallest eigenvalue
components

• This is similar to ridge which shrinks β's for components
with small eigenvalues. 50 / 82
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FIGURE 3.17. Ridge regression shrinks the regression coefficients of the prin-
cipal components, using shrinkage factors d2

j/(d2
j + λ) as in (3.47). Principal

component regression truncates them. Shown are the shrinkage and truncation
patterns corresponding to Figure 3.7, as a function of the principal component
index.

In Figure 3.7 we see that cross-validation suggests seven terms; the re-
sulting model has the lowest test error in Table 3.3.

3.5.2 Partial Least Squares

This technique also constructs a set of linear combinations of the inputs
for regression, but unlike principal components regression it uses y (in ad-
dition to X) for this construction. Like principal component regression,
partial least squares (PLS) is not scale invariant, so we assume that each
xj is standardized to have mean 0 and variance 1. PLS begins by com-
puting ϕ̂1j = ⟨xj ,y⟩ for each j. From this we construct the derived input
z1 =

∑
j ϕ̂1jxj , which is the first partial least squares direction. Hence

in the construction of each zm, the inputs are weighted by the strength
of their univariate effect on y3. The outcome y is regressed on z1 giving
coefficient θ̂1, and then we orthogonalize x1, . . . ,xp with respect to z1. We
continue this process, until M ≤ p directions have been obtained. In this
manner, partial least squares produces a sequence of derived, orthogonal
inputs or directions z1, z2, . . . , zM . As with principal-component regres-
sion, if we were to construct all M = p directions, we would get back a
solution equivalent to the usual least squares estimates; using M < p di-
rections produces a reduced regression. The procedure is described fully in
Algorithm 3.3.

3Since the xj are standardized, the first directions ϕ̂1j are the univariate regression

coefficients (up to an irrelevant constant); this is not the case for subsequent directions.
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Hansen and Singleton (1982)

• This is the original GMM example, though it comes from
macro-�nance not microeconometrics

max
ct+i,At+i

Et

∞∑

i=0

U(ct+i)

(1 + δ)i
subject to

At+i = (1 + r)At+i−1 + yt+i − ct+1

0 = lim
i→∞

EtAt+i(1 + r)−i

• At are your investment assets with return r and discount
factor δ

• yt is your income in period t, ct is your consumption
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Hansen Singleton (1982)

• Assume CRRA utility with risk aversion γ

U(ct+i) =
c1−γ
t+i

1− γ

• We can take the �rst-order/Euler conditions and get:

Et




1 + r

1 + δ
c−γt+1 − c−γt

︸ ︷︷ ︸
g(xt+i,θ)


 = 0

• We want to estimate the �deep parameters� θ ≡ (γ, δ).
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Hansen Singleton (1982)

• We can solve for θ without actually solving the dynamic
programming problem!

• We just need some instruments zt that are conditionally
independent/orthogonal to g(xt+i, θ) so that

Et[g(xt+i, θ)|zt] = 0⇒ Et[g(xt+i, θ)zt] = 0

• This is nonlinear GMM. We need a matrix of instruments
zt with dimension N ×Q where Q ≥ dim(θ).

• Where do we get zt? → Economic Theory!

54 / 82



Model
Selection

Richard L.
Sweeney

Intro

Orthogonality

Subset
Selection

Shrinkage

Ridge

LASSO

Dimension
Reduction

Conclusion

Examples

Trade

Crime

References

Backup

Info criteria

Hansen Singleton (1982)

Consider Et[g(xt+i, θ)|zt] = 0.
• The error arises from the error in the Euler equation:
deviations between observed behavior and expected
behavior.

• If the model is true this optimization error should be
independent of anything known to the agent at the time
the decision was made.

• We often write: Et[g(xt+i, θ)|zt,Ωt] = 0 where Ωt is
everything known by the agent up until time t (including
the full history).

• If we have some potential instrument zt and use the full
history then zt−1, zt−2, . . . are all valid instruments

• If we use the conditional moment restriction
Et[g(xt+i, θ)|zt,Ωt] = 0 then any nonlinear function of zt
is also an instrument

Et[g(xt+i, θ)f(zt,t−1,...,0)] = 0
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Hansen Singleton (1982)

• We have literally in�nite possibilities to construct
instruments zt, z

2
t , z

3
t , zt · zt−1, . . .

• But our instruments could be weak even though we have
many of them.

• And they might be highly correlated with each other.
• Carrasco (2012) suggests regularization on the instruments
�rst.

• One possibility for f(zt, zt−1, zt−2, . . .) is to take several
higher order interactions and take the �rst Q principal
components.

• Even though we might have 100 instruments, after running
PCA we might �nd that 99% of our variation is only in 6
components. In that case we should not try and identify
more than 6 parameters!

• Conlon (2014) suggests this as a test of non-identi�cation
in nonlinear BLP-type GMM problems.
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Factor Models: Take
Macroeconometrics!

• Related to PCA is the factor model
• These are frequently used in �nance for asset pricing.

ri = b0 + b1f1 + b2f2 + . . . bpfp + ei

• Typically we choose factors so that E[fi] = 0 and
E[fiei] = 0 and that Cov(fi, fj) = 0 for i 6= j.

• That is we choose scaled factors to form an orthogonal
basis (which makes pricing assets easier).

• Instead of choosing f to best explain X ′X we choose it to
best explain r by taking linear combinations of our X's.

• CAPM is a single factor model (where the factor is the
market return).

• Fama-French have expanded to a 5 factor model
(book-to-market, market-cap, pro�tability, momentum)

• Ross's APT is another form of a factor model.
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Factor Models: Other Examples

• Eigenfaces reduces your face to the �rst few eigenvalues �
this is how face detection works!

• In psychometrics they use data from multiple tests to
measure di�erent forms of intelligence (mathematical
reasoning, verbal, logical, spatial, etc.)

• An old literature searched for general intelligence factor g
• Nobody can tell what the GMAT measured!

• In marketing PCA/factor analyses are used in the
construction of perceptual maps

• Marketing practitioners use FA/PCA more than academics
these days (guess: maybe?)
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62 3. Linear Methods for Regression
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FIGURE 3.7. Estimated prediction error curves and their standard errors for
the various selection and shrinkage methods. Each curve is plotted as a function
of the corresponding complexity parameter for that method. The horizontal axis
has been chosen so that the model complexity increases as we move from left to
right. The estimates of prediction error and their standard errors were obtained by
tenfold cross-validation; full details are given in Section 7.10. The least complex
model within one standard error of the best is chosen, indicated by the purple
vertical broken lines.
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Overall Comparison
3.4 Shrinkage Methods 63

TABLE 3.3. Estimated coefficients and test error results, for different subset
and shrinkage methods applied to the prostate data. The blank entries correspond
to variables omitted.

Term LS Best Subset Ridge Lasso PCR PLS

Intercept 2.465 2.477 2.452 2.468 2.497 2.452
lcavol 0.680 0.740 0.420 0.533 0.543 0.419
lweight 0.263 0.316 0.238 0.169 0.289 0.344

age −0.141 −0.046 −0.152 −0.026
lbph 0.210 0.162 0.002 0.214 0.220
svi 0.305 0.227 0.094 0.315 0.243
lcp −0.288 0.000 −0.051 0.079

gleason −0.021 0.040 0.232 0.011
pgg45 0.267 0.133 −0.056 0.084

Test Error 0.521 0.492 0.492 0.479 0.449 0.528
Std Error 0.179 0.143 0.165 0.164 0.105 0.152

squares,

β̂ridge = argmin
β

{ N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj

)2
+ λ

p∑

j=1

β2
j

}
. (3.41)

Here λ ≥ 0 is a complexity parameter that controls the amount of shrink-
age: the larger the value of λ, the greater the amount of shrinkage. The
coefficients are shrunk toward zero (and each other). The idea of penaliz-
ing by the sum-of-squares of the parameters is also used in neural networks,
where it is known as weight decay (Chapter 11).

An equivalent way to write the ridge problem is

β̂ridge = argmin
β

N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj

)2

,

subject to

p∑

j=1

β2
j ≤ t,

(3.42)

which makes explicit the size constraint on the parameters. There is a one-
to-one correspondence between the parameters λ in (3.41) and t in (3.42).
When there are many correlated variables in a linear regression model,
their coefficients can become poorly determined and exhibit high variance.
A wildly large positive coefficient on one variable can be canceled by a
similarly large negative coefficient on its correlated cousin. By imposing a
size constraint on the coefficients, as in (3.42), this problem is alleviated.

The ridge solutions are not equivariant under scaling of the inputs, and
so one normally standardizes the inputs before solving (3.41). In addition,
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Implementation

• Routines are highly specialized: there are lots of tricks

• No hope of coding this up on your own!

• In R you can use glmnet or lars.

• In Python you can use scikit-learn

• In most recent Matlab in Stats toolbox you have lasso
and ridge.

• In STATA you can download .ado �les from Christian
Hansen's website (Chicago).
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Belloni, Chernozhukov, and Hansen
(JEP 2014)

�High-Dimensional Methods and Inference
on Structural and Treatment E�ects �

• OL's model is simple di�-in-di� with state and year FEs

• Key identifying assumption: no other trending variables
correlated with abortion shift and crime

• OL state: "When we include state-speci�c time trends, the
estimates change somewhat erratically, and the standard
errors double for murder and property crime and triple for
violent crime."

• BCH apply a double LASSO approach
• Lasso on both crime and abortion. Union of all selected

variables make it into the second stage.
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�implicitly estimates the residuals ε and v, regresses the
estimates of ε on v to construct an estimator of to construct an
estimator of α, thereby providing a selection analog of
Robinson's (1988) method for estimating the parameters of a
partially linear model to the high-dimensional case.�
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Baxter, Marianne. 2017. �Robust Determinants of Bilateral
Trade.� Tech. rep., Society for Economic Dynamics.

Belloni, Alexandre, Victor Chernozhukov, and Christian Hansen.
2014. �High-Dimensional Methods and Inference on
Structural and Treatment E�ects.� Journal of Economic

Perspectives 28 (2):29�50. URL http:

//www.aeaweb.org/articles?id=10.1257/jep.28.2.29.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001.
The elements of statistical learning, vol. 1. Springer series in
statistics New York, NY, USA:.

Hansen, Lars Peter and Kenneth J Singleton. 1982.
�Generalized instrumental variables estimation of nonlinear
rational expectations models.� Econometrica: Journal of the

Econometric Society :1269�1286.
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Review AIC/BIC

• AIC tends to select larger models than BIC since it
penalizes the number of parameters less heavily.

• These usually depend on ordering potential models by p the
number of components and then sequentially �tting them.

• AIC is not consistent: as N →∞ it may still select too
many parameters.

• BIC is consistent: as N →∞ it will select the correct
number of parameters.

• Of course for �nite-sample N <∞ anything can happen.
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Where does it come from?

How do we come up with these penalized regressions?

• AIC/BIC arise from considering the likelihood ratio test
(LRT) of a maximum likelihood estimator and making a
lot of assumptions.

• AIC arises from minimizing the Expected KLIC.

KLIC(f, g) =

∫
f(y) log(f(y))∂y −

∫
f(y) log(g(y))∂y

= Cf − E log(g(y))

• Low values of KLIC mean the models are similar.
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Where does it come from?

How do we come up with these penalized regressions?

• Recall that OLS is a ML estimator in the case where ε is
normally distributed.

D = −2 ln

(
Likelihood H0

Likelihood Ha

)
= −2 ln

(
(supL(θ|x) : θ ∈ Θ0)

(supL(θ|x) : θ ∈ Θ)

)

︸ ︷︷ ︸
Λ(x)

• If the models are nested then Θ0 ⊂ Θ and
dim(Θ)− dim(Θ0) = q then as N →∞ we have that
D →d χ2(q).
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Non-nested cases

Many cases we are interested in are not strictly nested

• Should I include x2 OR x3 in my regression? (partially
overlapping)

• Is the correct distribution f(y|x, θ) normal or log-normal?
(non-overlapping)
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Non-nested cases

• Cox (1961) suggested the following (often infeasible
solution) by assuming that Fθ is the true model.

LR(θ̂, γ̂) = Lf (θ̂)− Lg(γ̂) =

N∑

i=1

ln
f(yi|xi, θ̂)
g(yi|xi, γ̂)

• Depending on which the true model is you could reject Fθ
for Gγ and vice versa!

• Deriving the test statistic is hard (and speci�c to Fθ)

because we must obtain Ef [ln f(yi|xi,θ̂)
g(yi|xi,γ̂) ].

• Similar to AIC in that we are minimizing KLIC over Fθ.
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Vuong Test

H0 : Eh(y|x)

[
f(y|x, θ)
g(y|x, γ)

]
= 0

→ Eh[ln(h/g)]− Eh[ln(h/f)] = 0

• Instead of taking expectation with respect to one of two
distributions, we take it with respect to h(y|x) the
unknown but true distribution.

• Same as testing whether two densities (f, g) have same
KLIC.

• The main result is that (details in 8.5 of CT):

1√
N
LR(θ̂, γ̂)→d N [0, ω2

∗]

ω2
∗ = V0

[
ln
f(y|x, θ̂)
g(y|x, γ̂)

]
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Non-nested cases

Many cases we are interested in are not strictly nested

• Should I include x2 OR x3 in my regression? (partially
overlapping)

• Is the correct distribution f(y|x, θ) normal or log-normal?
(non-overlapping)
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Non-nested cases

• Cox (1961) suggested the following (often infeasible
solution) by assuming that Fθ is the true model.

LR(θ̂, γ̂) = Lf (θ̂)− Lg(γ̂) =

N∑

i=1

ln
f(yi|xi, θ̂)
g(yi|xi, γ̂)

• Depending on which the true model is you could reject Fθ
for Gγ and vice versa!

• Deriving the test statistic is hard (and speci�c to Fθ)

because we must obtain Ef [ln f(yi|xi,θ̂)
g(yi|xi,γ̂) ].

• Similar to AIC in that we are minimizing KLIC over Fθ.
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Vuong Test

H0 : Eh(y|x)

[
f(y|x, θ)
g(y|x, γ)

]
= 0

→ Eh[ln(h/g)]− Eh[ln(h/f)] = 0

• Instead of taking expectation with respect to one of two
distributions, we take it with respect to h(y|x) the
unknown but true distribution.

• Same as testing whether two densities (f, g) have same
KLIC.

• The main result is that (details in 8.5 of CT):

1√
N
LR(θ̂, γ̂)→d N [0, ω2

∗]

ω2
∗ = V0

[
ln
f(y|x, θ̂)
g(y|x, γ̂)

]
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