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Overview

How many components should we include in our model?
e Too few: under-fitting and large residuals.

e Too many: over-fitting and poor out of sample prediction.
How do we choose?

e X variables.
e |nstrumental Variables.

In these notes we'll talk about these in the context of linear
regression. (ESL Ch 3)
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When do we have too much data?

On the internet!
Hedonics: What really determines the price of your house?
Prediction: What really determines loan defaults?

Consideration Sets: How many products do consumers
really choose among on the shelf?

What elements of financial filings really matter?

)
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What we teach undergrads

Traditional ways to select the number of components (p) in a
model:

R’ = 1- SSR(p)/TSS — SSR(p)/TSS - —L

N-p-1
AIC(p) = In (W) +(p+ 1)%
BIC(p) = In (W) +(p+1)1nTN

e Commonly employed in macroeconometric or time-series
context for things like selecting lags of an autoregression

p
Yt = ao + Z QrYt—k + €t
k=1

1



Model

Selection These aren’t all that helpful in
Richard L. . .
Sweeney applled miICro

Intro

e Rely on LRT and a bunch of assumptions (see backup).
No clear "best" method.
e Only make sense for "nested" models
Ridge e Should you include z; and x,, or just 2,7
LASSO K
e Not should you include x5 or 57
e Some tests (Cox, Vuong) can handle non-nested case, but
rarely used

Trade
Crime

Info criteria
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Back to the real world...

We have some theoretical benchmark which lets us discern
which of two model we prefer (under certain assumptions).

In practice we often start with a functional form like:
yi = Bo+ > h_q BeZik + &

Which z's do we include?

Which z's do we leave out?

It is not clear that BIC/AIC or Vuong test tells us what we
should do in practice.

Helpful to review what we're really getting out of
multivariate regression. [Much of this section taken from
ESL Ch 3]
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o Consider a univarite model (with no intercept)

Orthogonality

Y=XB+c¢€
o Let (z,y) = va x;y; be the inner product between these
s two variables in our sample.
e Then the least squares estimate and residuals are
B — <$, y>
Trade (x,x)
Crime ~
r=y—af

Info criteria
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What about the case of multiple
regression?

Suppose we had inputs 1,22, ..., 2,

If they are all orthogonal, ie (z;,z;) = 0, we can show
that estimates can be recovered using the exact same
univariate procedure.

Since they're orthogonal, including them has no impact.

Outside of controlled experiments, this is not going to be
applicable.
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OLS with correlated inputs

e Imagine if we include an intercept along with our = of

interest.

e Then the least squares estimate becomes

B =

<$ — f7y>

(r —z,x — )

e Note that z — T are just the residuals from a projection z

ontoourzg=1

10/82
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Getting back to orthogonality

This suggests a simple procdure

@ Orthogonalize x, by projecting it onto
® Regress y onto this residual z; to get 5,

This generalizes to the case of p inputs, where for each z,
you project onto the residuals from the previous p — 1 x’s.

Unless we are running regressions by hand this doesn’t
seem tremendously helpful.

However, in practice this is often what your software does!

[
[
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Gram-Schmidt/QR Decomposition
|

O letzg=2=1
® For j =1,2,...p: Regress xj on 20, 21,...,2j_1 to give
you Vi1 = (21, 2;)/( 2, x;) and residual
o J=1 -
Zj =T — D 30 VkiZk-
® With your transformed orthogonal basis z you can now
regress y on z, one by one to obtain 3,.

12/82
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Gram-Schmidt/QR Decomposition
[

What does this do?

The resulting vector 3 has been adjusted to deliver the
marginal contribution of z; on y after adjusting for all z_;.

If ; is highly correlated with other x}’s then the residual
zj will be close to zero and the coefficient will be unstable.

This will be true for any variables x; within a set of
correlated variables.

We can delete any one of them to "resolve" this issue.

However we should pause to appreciate that our estimate,
and its stability, is mechanically linked to the other x; we
do or don't include.

13/82
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*QR Decomposition (Technical
Details)

QR Decomp has a matrix form which regression software uses:

X = 7ZT
= ZD7 ' DU
N e
Q R
3 = R'QYy
y = QQy

Z is the matrix of the orthogonalized residuals z;'s.
I' is upper triangular matrix with entries 4y;

D is diagonal matrix with entries ||z;]].

Q@ is N x ((p+ 1) orothogonal matrix Q'Q =1
Ris (p+1) x (p+ 1) upper triangular matrix.

14 /82
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What happens in practice?

What are people likely doing in practice:

e Start with a single x variable and then slowly add more
until additional z's were insignificant

e Start with all possible x variables and drop those where
t-statistics were insignificant.

e These procedures actually make some sense if the columns
of X are linearly independent or orthogonal.

e In practice our regressors are often correlated (sometimes
highly so).

N
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Least squares have some undesirable properties

e Poor prediction: They are low bias but high variance. By

tempering some of the large coefficients, might improve
Subset

Selection prediCtion
e Interpretation: Sometimes we just want to know the main

Ridge factors explaining variation in the data.
LASSO

e A natural alternative is to restrict models to subsets of the

full x's.

e If you have K potential regressors you could consider all

Lrade 2K possible regressions.

Or you could could consider all (%) possible combinations
with p parameters.

Info criteria
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Subset Size k

FIGURE 3.5. All possible subset models for the prostate cancer example. At

each subset size is shown the residual sum-of-squares for each model of that 5ize,17 /82
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Forward Stepwise Regression

Consider the following greedy algorithm
@ Start with an empty model and add a constant 7.

® Then run K single-variable regressions, choose the z; with
the highest t-statistic call this (1),

® Now run K — 1 two variable regressions where the
constant and z(!) and choose z(?) as regression where
has the highest t-statistic.

O Now run K — 2 three variable regressions where the
constant and z(V), (2

@ You get the idea!

We stop when the z; with the highest t-statistic is below some
threshold (often 20% significance).
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Backwards Stepwise Regression

@ Start with an full model.

® Remove the x variable with the lowest ¢-statistic. Call this
(k)
z\%),

© Re-run the regression without (%),

O Repeat until the smallest t-statistic exceeds some
threshold.

19/82
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Comparison

Backwards and fowards stepwise regression tend to give
similar choices (but not always).

Everything is trivial if X's columns are orthogonal
(computer has some tricks otherwise- QR).

Forward stepwise works when we have more regressors than
observations K > N.

| proposed the t-stat here but some packages use AIC/BIC
as the criteria.

We should also be careful to group dummy variables
together as a single regressor.

These are implemented in step in R and stepwise in
Stata.

We probably want to adjust our standard errors for the fact
that we have run many regressions in sequence before
arriving at our model. In practice not enough people do
this!
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Sweeney RegreSSIOn
As an alternative consider:
Subeet ® Start with r =y and (54,...,05,) = 0.
Selection

® Find the predictor ; most correlated with 7.
Ridge ©® Update 3; < [ + 0; where §; = € - sign(r, z;).
O Update r <— r — §; - ¢; and repeat for S steps.

e Alternative 0; = (r,z;)

Tiade e We can continue until no regressors have correlation with
Crime .
residuals

This is very slow (it takes many many S).

Info criteria

Sometimes slowness can be good — in high dimensions to
avoid overfitting.
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Stepwise selection proedures

[} ® Best Subset
8 1 Forward Stepwise
S \ © Backward Stepwise
I Forward Stagewise
&4 |
a © | e
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FIGURE 3.6. Comparison of four subset-selection techniques on a simulated lin-
ear regression problem Y = XT3 4¢. There are N = 300 observations on p = 31
standard Gaussian variables, with pairwise correlations all equal to 0.85. For 10 of
the variables, the coefficients are drawn at random from a N(0,0.4) distribution;
the rest are zero. The noise € ~ N(0,6.25), resulting in a signal-to-noise ratio of
0.64. Results are averaged over 50 simulations. Shown is the mean-squared error
of the estimated coefficient [:I(k) at each step from the true (3.
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Penalized Regression

Suppose we fit a regression model and penalized extra variables
all in one go, what would that look like?

N

A e p p
5=argmﬁln 52(%—ﬁo—zwzjﬁj)2+)\2|ﬁj\q
j=1 j=1

=1

We call A the regularization parameter.

The penalty term )‘z§=1 5| as penalizes models where
B gets further away from zero.

Similar to placing a prior distribution on f3; centered at 0.

Important: We definitely want to standardize our inputs
before using penalized regression methods.

N
w
©
N
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What Penalty Function?

Usually you fix ¢ and then look at how estimates respond
to v.

There are two famous cases ¢ = 1 (Lasso) and g = 2
(Ridge) though in practice there are many possibilities.
We can choose A in a way that minimizes expected
prediction error (EPE).

Recall EPE(X) = E, By, ([Y — (X, \)]?|X).

In practice most people look at out of sample prediction
error rate on a cross validated sample.
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Ridge Regression

A popular option is the ¢ = 2 case

N

K K
A 1
Rid, i 2 2
[H9e = argmﬁln 52(% —Bo — E:lfﬂzjﬂj) +)‘Zl 1851
]: ]:

i=1

e Penalty is Ly norm on (.

e Can re-write as a constriant ZjK:l 1Bi1* < s
° BRidge _ (X/X + AI)flle.

e If X is orthonormal then Bfidge = B;/(1+ \)

e In words: everything gets dampened by a constant factor A

(we don't get zeros).

e Adding a constant to the diagonal of (X’'X) ensures that

the matrix will be invertible even when we have
multicollinearity.

N
]

N
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Y Just like we can diagonalize (some) square matrices, we can
take the singular value decomposition (SVD) of any matrix X
that is N x p
X = UDV’
Ridge
LASSO
e U,V are N x p and p x p orthogonal matrices (U spans
the column space, and V spans the row space of X)
Trade e D is a diagonal matrix p x p with elements corresponding

Crime

to the singular values of X.

e If X is a square, diagonalizable matrix the singular values
are equal to the eigenvalues.

Info criteria

N
o
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OLS vs Ridge
Can write the least squares solution as
X5 = X(X'X) X'y = UU"y.

e U’y maps y into the orthonormal basis U.

e This looks a lot like QR except that we have chosen a
different basis.

N
N
)
N
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OLS vs Ridge

Can write the least squares solution as

X5 = X(X'X) X'y = UU"y.

e U’y maps y into the orthonormal basis U.

e This looks a lot like QR except that we have chosen a

different basis.

And the Ridge solution is:

X 3ridge — X (X'X + AI)~

e Same change of basis.
2 /(72
d;/(d5 + ).

X'y = UD(D?+ AI)"'DU’y

p 2
= Z“'idj ujy
- J 72 J
= di + A

Now we shrink each component by

N
~
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e Ridge is shrinking the OLS cordinates of y by al?/(dj2 + )
e This will have the biggest impact on small d;. What does

that mean?
o Consider the sample variance S = XTX /N
hm e It has eigen decomposition XTX = VD2VT, and the
eigenvectors v; are the principal components directions of
X.
e First component (largest eigenvalue) is z1 = Xv; = uzd;.
Come e Variance is Var(z1) = Var(Xv) = % (z1 is first
principal component of X).
Info criteria e So this is telling use the ridge is placing more weight on

directions in the columnspace of X that have larger sample
variance

28 /82
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Principal Components

< -
Largest Principal o
Component
o 0
~ o
&
X o
o -
Smallest Principal
Component
o o
Y -~
T T T T T
4 2 0 2 4

FIGURE 3.9. Principal components of some input data points. The largest prin-
cipal component is the direction that mazimizes the variance of the projected data,
and the smallest principal component minimizes that variance. Ridge regression
projects y onto these components, and then shrinks the coefficients of the low-
variance components more than the high-variance components. 29 /82
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1 = -
BLASSO _ aro min 5 Z(yi — By — Zl‘ijﬁj)Q - )\Z 155
A i=1 j=1 Jj=1
Ridge

LASSO

Penalty is L1 norm on .
. . K
e Can re-write as a constriant ) ;= |3;| <'s
If X is orthonormal then B]LASSO = sz’gn(,é’j) : (|B]| — A+
In words: we get coefficients that are closer to zero by A,

but coefficients within X\ of zero are shrunk to zero. It thus
produces models that are sparse.

Trade
Crime

Info criteria
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LASSO vs Subset Selection

Instead of a discrete parameter such as the number of lags p we
can continuously penalize additional complexity with A.
But... is choosing A any easier than choosing p?

e We call X the regularization parameter.

e We can choose A in a way that minimizes expected
prediction error (EPE).

e Recall EPE()) = E.E,,.([Y — g(X, M)]?|X).

e In practice most people look at out of sample prediction
error rate on a cross validated sample.
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Coefficients
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Backup FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression

Info criteria (right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |81 + |B2| < t and Bf + B3 < t*, respectively,
while the red ellipses are the contours of the least squares error function.
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What is the point?
Tl Ridge:

e Ridge doesn't provide sparsity which can be a good thing.

e It is most helpful (relative to OLS) when X's are highly

correlated with one another.

e OLS can set large but imprecise coefficients when it cannot
Ridge disentangle effects.
LASSO

LASSO:

e LASSO is useful for variable/feature selection.

e People sometimes use LASSO to choose components and
Trade . - .
Crima then OLS for unbiased coefficient estimated.

We can actually combine them using elastic net regression:

Info criteria

K K
P\, A, B) =AY 1B+ X2 Y 1851
s =1
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Intro TABLE 3.4. Estimators of 3; in the case of orthonormal columns of X. M and X
are constants chosen by the corresponding techniques; sign denotes the sign of its

Orthogonality argument (+1), and x4 denotes “positive part” of x. Below the table, estimators

Subset are shown by broken red lines. The 45° line in gray shows the unrestricted estimate
Selection for reference.

Shrinkage Estimator Formula

Ridge

LASSO

Best subset (size M) Bj I(|[§]| > |[§(M)|)
Dimension . ~
Reduction Ridge ﬁj/(l + )‘)
Conclusion Lasso Sign(ﬁj)(lﬁjl - /\)Jr

Examples
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Best Subset Ridge Lasso

References
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Other Extensions

Grouped LASSO for penalzing groups of coefficients at
once (like fixed effects)

Relaxed LASSO run LASSO to select coefficients and then
run a non-penalized subset regression or LASSO with a less
stringent penalty on the subset. (Here CV tends to pick a
less strong penalty term \ leading to less shrinkage and
bias).

SCAD: Smoothly Clipped Absolute Deviation: do less
shrinkage on big coefficients but preserve sparsity

dJa(|beta, \ (= 18])+
—_— =\ (B <A+ ——7 1T

e sgn(®) | 1081 < ) + o= 1031 >
Adaptive LASSO uses a weighted penalty of the form
> % w;|B;| where W; = 1/[;|” using the OLS estimates
as weights. This yields consistent estimates of parameters
while retaining the convexity property.
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Examples N . .
. penalize large coefficients less. For SCAD we use A =1 and a =4, and v = } in
Crime the last panel.
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Sweeney Consider this alternative to Forward Stagewise Regression:
® Start with r =y —7 and (51,...,5,) = 0. (Standardize
first!)

® Find the predictor z; most correlated with r.
© SLOWLY move j3; from 0 to its least-squares estimate

Ridge O Update r < r — 3 - x;.

HAsse O Keep moving x; in same direction until x has as much
correlation with updated r,

@ Continue updating (3;, Bx) in direction of joint
least-squares coefficients until some other competitor x;
has as much correlation with 7.

@ Continue until all p predictors have entered. After

ffo min[N — 1, p] steps we arrive at full OLS solution.

Trade
Crime

e Optional: If a current least-squares estimate hits zero drop
it from the active set and re-estimate the joint least
squares direction without it.
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LAR: Least Angle Regression

Why do we need LAR?

e |t turns out that with the optional step from the previous
slide: LAR gives us an easy algorithm to compute the
LASSO estimate.

e Actually it does even better — it gives us the full path of
LASSO estimates for all values of \!

e This is actually a relatively new result.
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FIGURE 3.15. Left panel shows the LAR coefficient profiles on the simulated
data, as a function of the L1 arc length. The right panel shows the Lasso profile.
They are identical until the dark-blue coefficient crosses zero at an arc length of
about 18.
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Overall Comparison

Forward Stepwise

® LAR

. ® Lasso

Forward Stagewise

° @ Incremental Forward Stagewise

ee0000 00
.e /
e o °° o

/
\ . [
\ /

E||B(k) - 8II*

Fraction of L; arc-length

FIGURE 3.16. Comparison of LAR and lasso with forward stepwise, forward
stagewise (FS) and incremental forward stagewise (FSy) regression. The setup
is the same as in Figure 3.6, except N = 100 here rather than 300. Here the
slower FS regression ultimately outperforms forward stepwise. LAR and lasso
show similar behavior to FS and FSy. Since the procedures take different numbers
of steps (across simulation replicates and methods), we plot the MSE as a function
of the fraction of total L1 arc-lenath toward the least-sauares fit.
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Other Data Reduction Techniques

We have other data reduction techniques with a long history in

Econometrics
e Principal Components
e Factor Analysis

e Partial Least Squares

43 /82
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Principal Components

Suppose we have a very high dimensional X where we have a
high degree of correlation among the components x;.

We can start by computing the appropriate correlation
matrix C' = E[X'X] where X denotes we have
standardized each column x; to have mean zero and
variance 1.

Diagonlize C' via the eigen-decomposition V-1CV = D
where D is the diagonal matrix of eigenvalues.

Sort D and the corresponding columns of V' in decreasing
order of the eigenvalues d;.

Choose a subset of m < K eigenvalues and eigenvectors
and call that V,,, and A,

Compute transformed data: Z,, = V;, X which is of
dimension N x m instead of N x K.
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Principal Components

If m < K then we can substantially reduce the dimension
of the data.

The idea is to choose m so that (Z'Z) spans
approximately the same space that (X’X) does.

This works because we use the principal eigenvectors
(those with the largest eigenvalues).

The first eigenvector explains most of the variation in the
data, the second the most of the remaining variation, and
so on.

You may also recall that eigenvectors form an orthonormal
basis, so each dimension is linearly independent of the
others.

As eigenvalues decline, it means they explain less of the
variance.
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Principal Components

Output from software will inlcude

Coefficients: these transform from X — Z

Score: these are the transformed Z's
Latent/Eigenvalue: the corresponding Eigenvalue
Explained/Cumulative: cumulative explained variance
21X/ 2ok M)

Stata: pca, Matlab: pca, R/stats: princomp.

=)

)

N
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Principal Components

How many components?

e Choose # of components by the eigenvalues or % of
variance explained

e Common cutoffs are 90-95% of variance.

e Eigenvalue based cutoff rules (only take eigenvalues > 1).

e Most common method is to eyeball the scree plot.

~

)

N
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Componsnt Component
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Principal Components

Table 1 Principal Components

Principal Eigenvalue Propo.rtion of Cumt.JIative
Component Variance Variance
1 75 26.95% 26.95%
2 43 15.45% 42.40%
3 30 10.78% 53.18%
4 21 7.55% 60.73%
5 19 6.83% 67.55%
6 18 6.47% 74.02%
7 17 6.11% 80.13%
8 11 3.95% 84.08%
9 10 3.59% 87.67%
10 10 3.41% 91.09%
11 9 3.16% 94.25%
12 5 1.80% 96.05%
13 4 1.58% 97.63%
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e e We can run a regression on principal components Z's and
then recover the betas of the X's
M
Q?CT) _ y]_ + Z szm
m=1

o e Because principal components are orthogonal we can find
LAsSO coefficients using univariate regression
Dinerder On = (Zm,¥)/ (2, 2m).
e We can recover the = coefficients because the PCA is a
linear transformation:

ﬁPCR Z emum

o If M = P (we use all components) then PCR = OLS.

e If M < P then we discard the p — M smallest eigenvalue
components

e This is similar to ridge which shrinks 3’s for components

50 /82
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Intro

1.0

Orthogonality

Subset
Selection

Shrinkage
Ridge
LASSO

Shrinkage Factor

Dimension
Reduction

00 02 04 06 08

Conclusion 2 4 6 8

Examples
Trade
Crime

Index

FIGURE 3.17. Ridge regression shrinks the regression coefficients of the prin-
References cipal components, using shrinkage factors di/(d3 + N) as in (3.47). Principal
Backup component regression truncates them. Shown are the shrinkage and truncation
Info criteria patterns corresponding to Figure 3.7, as a function of the principal component
indez.
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Hansen and Singleton (1982)

e This is the original GMM example, though it comes from

macro-finance not microeconometrics

Ct+z .
max E; - subject to
Ct+i7At+’L' Z Z
Ay = (1 + T)At+z’—1 + Yrri — Ci1

0 = lim EA;(1+7r)""
1—00

e A, are your investment assets with return r and discount

factor &

e 1 is your income in period ¢, ¢; is your consumption
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Hansen Singleton (1982)

e Assume CRRA utility with risk aversion

1—y

C, . -
Uletti) = 1tjz,y

e We can take the first-order/Euler conditions and get:

1+7r _ _
I

9(xty4,0)

Ey

e We want to estimate the “deep parameters” 6 = (v, ).
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Hansen Singleton (1982)

We can solve for 6 without actually solving the dynamic
programming problem!

We just need some instruments z; that are conditionally
independent/orthogonal to g(x¢4;,0) so that

Ei[g(zt14,0)|2]) = 0 = Ei[g(2444,0)2] =0

This is nonlinear GMM. We need a matrix of instruments
z; with dimension N x @ where @ > dim(#0).

Where do we get z;?7 — Economic Theory!

ol

0

N
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Hansen Singleton (1982)

Consider Ey[g(x¢+i,0)|2) = 0.

The error arises from the error in the Euler equation:
deviations between observed behavior and expected
behavior.

If the model is true this optimization error should be
independent of anything known to the agent at the time
the decision was made.

We often write: Ei[g(x¢14,0)|2t, 2] = 0 where Q; is
everything known by the agent up until time ¢ (including
the full history).

If we have some potential instrument z; and use the full
history then z;_1,z;_o,... are all valid instruments

If we use the conditional moment restriction
Eig(x44,0)|2¢, ) = 0 then any nonlinear function of z;
is also an instrument

Ei[g(wt44,0) f (2t4-1,..0)] = 0

55 /82



Model
Selection

Richard L.

Sweeney

Ridge

LASSO

Dimension
Reduction

Trade
Crime

Info criteria

Hansen Singleton (1982)

e We have literally infinite possibilities to construct

instruments 2y, 22, 23, 2 - 21, . . -

But our instruments could be weak even though we have
many of them.

And they might be highly correlated with each other.
Carrasco (2012) suggests regularization on the instruments
first.

One possibility for f(z¢, z¢—1, 2¢—2, . ..) is to take several
higher order interactions and take the first ) principal
components.

Even though we might have 100 instruments, after running
PCA we might find that 99% of our variation is only in 6
components. In that case we should not try and identify
more than 6 parameters!

Conlon (2014) suggests this as a test of non-identification
in nonlinear BLP-type GMM problems.

o
o
o
)
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Factor Models: Take
Macroeconometrics!

Related to PCA is the factor model
These are frequently used in finance for asset pricing.

ri =bo+bifi +bafo+ ... bpfp+ e

Typically we choose factors so that E[f;] = 0 and
E|[fiei] = 0 and that Cov(f;, f;) = 0 for i # j.

That is we choose scaled factors to form an orthogonal
basis (which makes pricing assets easier).

Instead of choosing f to best explain X’X we choose it to
best explain r by taking linear combinations of our X's.
CAPM is a single factor model (where the factor is the
market return).

Fama-French have expanded to a 5 factor model
(book-to-market, market-cap, profitability, momentum)
Ross’s APT is another form of a factor model.

(5]
<
)
N
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Factor Models: Other Examples

Eigenfaces reduces your face to the first few eigenvalues —
this is how face detection works!
In psychometrics they use data from multiple tests to
measure different forms of intelligence (mathematical
reasoning, verbal, logical, spatial, etc.)
e An old literature searched for general intelligence factor g
e Nobody can tell what the GMAT measured!
In marketing PCA /factor analyses are used in the
construction of perceptual maps
Marketing practitioners use FA/PCA more than academics
these days (guess: maybe?)
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TABLE 3.3. Estimated coefficients and test error results, for different subset

e and shrinkage methods applied to the prostate data. The blank entries correspond
Orthogonality to variables omitted.

ubset

election Term LS  Best Subset Ridge Lasso PCR PLS
Shrinkage Intercept 2.465 2477 2.452  2.468 2.497 2.452
Ridge . lcavol 0.680 0.740 0.420  0.533 0.543 0.419
LASSO lweight 0.263 0.316 0.238  0.169 0.289 0.344
Dimension age —0.141 —0.046 —0.152  —0.026
Reduction 1lbph 0.210 0.162  0.002 0.214 0.220
ol svi 0.305 0.227  0.094 0.315 0.243

lep —0.288 0.000 —0.051 0.079

Examples gleason —0.021 0.040 0.232 0.011
Trade pgeg4s 0.267 0.133 —0.056 0.084
Crime Test Error 0.521 0.492 0.492 0479 0.449 0.528
References Std Error 0.179 0.143 0.165 0.164 0.105 0.152

Backup

Info criteria
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o Least Squares
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B

FIGURE 3.18. Coefficient profiles from different methods for a simple problem:

two inputs with correlation £0.5, and the true regression coefficients § = (4, 2).
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Implementation

Routines are highly specialized: there are lots of tricks
No hope of coding this up on your own!

In R you can use glmnet or lars.

In Python you can use scikit-learn

In most recent Matlab in Stats toolbox you have lasso
and ridge.

In STATA you can download .ado files from Christian
Hansen’s website (Chicago).
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Robust Determinants of Bilateral Trade

Marianne Baxter'

Boston University and NBER

Jonathan Hersh?

Boston University

Abstract
What are the policies and country-level conditions which best explain bilateral
trade flows between countries? As databases expand, an increasing number of
possible explanatory variables are proposed that influence bilateral trade
without a clear indication of which variables are robustly important across
contexts, time periods, and which are not sensitive to inclusion of other
control variables. To shed light on this problem, we apply three model
selection methods — Lasso reguarlized regression, Bayesian Model Averaging,
and Extreme Bound Analysis -- to candidate variables in a gravity models of
trade. Using a panel of 198 countries covering the years 1970 to 2000, we find
model selection methods suggest many fewer variables are robust that those
suggested by the null hypothesis rejection methodology from ordinary least

squares.
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&) 2) (3)

Variable OLS Lassa Post Lasso
In Dist 0.500%** 0

In of Dist between Capitals 0.201 0

In of Weighted Dist -1.875%* -0.994 -1.690**
In of CES Weighted Dist 00205 0,133 0.534%%%
In of Product of GDPs 0.729%#* 0.559 0.636%+%
Contiguous 0.614%* 0431 0.601%**
Either Island 0.475%4 0.337 0.476%*
Either Landlocked -0.531%#2 0211 0.520%**
Share Official Language 0.0646% 0.066 0.0470
9%+ Speak Language 0.311%* 0.296 0.327%=*
Former Colony 085542+ 0738 0.867**
Common Colonizer 0.396%** 0.319 0.394%+%
Common Legal Origin 0.282%%* 0.25 0.286%+#
Religious Distance 0.209%** 0174 0.215%x*
Human Capital (product) 0.742%2% 0.389 0.707%**
Physical Capital (product) 0.129%%+ 0

Arable Land (product) 0,231+ 0.15 -0.249%*+
WTO/GATT 0.335%%+ 0.171 0.353%%%
Regional Trade Agreement 0.00572 0

Common Currency 0.448%2* 0.109 0.48]%+*
Capital Openness -0.00298 0

Exchange Rate Volatility -0.0120%=# 0

Either Fixed Exch Rate 0.0414%% 0

Both Fixed Exch Rate 0.0949%#* 0

Either Crawling Peg Exch Rate 0.177%** 0.073 0.130%*#
Both Crawling Peg Exch Rate 0.0814%%* 0

Either Moving Band Exch Rate 0.0758%#* 0

Both Moving Band Exch Rate 0.0871%** 0

Debt Crisis 3yr Window -0.0159 0

Banking Crisis 3yr Window 0.0513%%% 0

Currency Crisis 3yr Window 0.0142 0

Constant 0.0668%** 0.064 0.0667***
Observations 152213 152,213 152,213

Notes: Dependent variable is the log of real bilateral trade flows for all regression
specifications. Al regressions include year. exporter, and importer fixed effects. For OLS, t
statistics are presented in parentheses. Robust standard crrors, T-statistics are hidden in this
version of the table *p<0.05, *= p<0.01, *** p<0.001
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THE

QUARTERLY JOURNAL
OF ECONOMICS

Vol. CXVI May 2001 Issue 2

THE IMPACT OF LEGALIZED ABORTION ON CRIME*#

Joun J. DoNoHUE IIT anDp STEVEN D. LEVITT

We offer evidence that legalized abortion has contributed significantly to
recent crime reductions. Crime began to fall roughly eighteen years after abortion
legalization. The five states that allowed abortion in 1970 experienced declines
earlier than the rest of the nation, which legalized in 1973 with Roe v. Wade.
States with high abortion rates in the 1970s and 1980s experienced greater crime
reductions in the 1990s. In high abortion states, only arrests of those born after
abortion legalization fall relative to low abortion states. Legalized abortion ap-
pears to account for as much as 50 percent of the recent drop in crime.

67 /82



Model
Selection

Richard L.
Sweeney

Intro
Orthogonality

Subset

Selection

Shrinkage
Ridge
LASSO

Dimension
Reduction

Conclusion

Examples
Trade
Crime

References

Backup

Info criteria

Delta log(property crime),
1085-97

Changes in Violent Crime and Abortion Rates, 1985-1997

% change in property crime per capita
Fitted Values

319328 -| ™

NE
s TH

-.414966 — ce

1 i 1 1
48.6756
Change in effective abortions

FiGure IVb
Changes in Property Crime and Abortion Rates, 1985-1997

1
442.922
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In(Violent In(Property
crime per crime per In(Murder per
capita) capita) capita)
Variable (1) (2) (3) (4) (5) (6)

“Effective” abortion rate -.137 —-.129 —-09% —.091 -—-.108 —.121
(x 100) (.023) (024) (018) (.018) (.036) (.047)
In(prisoners per capita) — —.027 — —.159 — —.231
(t - 1) (.044) (.036) (.080)
In(police per capita) — —.028 — —.049 — —.300
t—1) (.045) (.045) (.109)
State unemployment rate — .069 — 1.310 — .968
(percent unemployed) (.505) (.389) (.794)
In(state income per — .049 — .084 — —.098
capita) (.213) (.162) (.465)
Poverty rate (percent — —.000 — —.001 — —.005
below poverty line) (.002) (.001) (.004)
AFDC generosity (¢ — — .008 — .002 — —.000
15) (x 1000) (.005) (.004) (.000)
Shall-issue concealed — —.004 — .039 — —.015
weapons law (.012) (.011) (.032)
Beer consumption per — .004 — .004 — .006
capita (gallons) (.003) (.003) (.008)
R? 938 942 990 992 914 918

The dependent variable is the log in the per capita crime rate named at the top of each pair of columns.
The first column in each pair presents results from specifications in which the only additional covariates 6¢e/ 82
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Belloni, Chernozhukov, and Hansen
(JEP 2014)

“High-Dimensional Methods and Inference
on Structural and Treatment Effects ”

e OL’s model is simple diff-in-diff with state and year FEs

e Key identifying assumption: no other trending variables
correlated with abortion shift and crime

e OL state: "When we include state-specific time trends, the
estimates change somewhat erratically, and the standard
errors double for murder and property crime and triple for
violent crime."

e BCH apply a double LASSO approach

e Lasso on both crime and abortion. Union of all selected
variables make it into the second stage.
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crime rates over a 12-year period. To accomplish this, we use the double-selection
procedure outlined in the previous section with models of the form

A)‘ = ﬂ'rA“m s zn!’.ﬁ( + Fa + Agm

at
— ! ]
A(‘:nf — it H( + Ky + Avﬂ!‘

In this formulation, Ay, =y,; — y,;_; and Aag, Asy, and Avg are defined simi-
larly; 9, and &, are time effects; 2, is a large set of controls; and we have introduced
an equation for the abortion rate to make the relation to the earlier discussion
clear. z, consists of 284 variables made up of the levels, differences, mitial level,
initial difference, and within-state average of the eight state-specific time-varying
observables, the initial level and initial difference of the abortion rate relevant for
crime type ¢, quadratics in each of the preceding variables, interactions of all the
aforementioned variables with ¢ and (%, and the main effects £ and ¢*. This set of
variables corresponds to a cubic trend for the level of the crime rate and abortion
rate that is allowed to depend on observed state-level characteristics.

“implicitly estimates the residuals ¢ and v, regresses the
estimates of € on v to construct an estimator of to construct an
estimator of «, thereby providing a selection analog of
Robinson’s (1988) method for estimating the parameters of a

partially linear model to the high-dimensional case.”
71/82
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Effect of Abortion on Crime

Type of crime
Violent Property Murder
Estimator Effect Std. error Effect Std. error Effect Std. ervor
First-difference —.157 034 —.106 021 —.218 .068
All controls 071 284 —.161 106 —1.827 932
Double selection —.171 117 —.061 057 —.189 177

Notes: This table reports results from estimating the effect of abortion on vielent crime, property crime,

and murder. The row labeled “First-difference” gives baseline first-difference estimates using the controls
from Donohue and Levitt (2001). The row labeled “All controls” includes a broad set of controls meant
to allow flexible trends that vary with state-level characteristics. The row labeled “Double selection”

reports results based on the double selection method outlined in this paper and selecting among the

variables used in the “All controls” results.
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e AIC tends to select larger models than BIC since it
penalizes the number of parameters less heavily.

e These usually depend on ordering potential models by p the
number of components and then sequentially fitting them.

Ridge e AIC is not consistent: as N — oo it may still select too
- many parameters.

e BIC is consistent; as N — oo it will select the correct
number of parameters.

izt e Of course for finite-sample N < oo anything can happen.

Crime

Info criteria
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Where does it come from?

How do we come up with these penalized regressions?

e AIC/BIC arise from considering the likelihood ratio test
(LRT) of a maximum likelihood estimator and making a
lot of assumptions.

e AIC arises from minimizing the Expected KLIC.

[ rostswnoy - [ s)tosts

= Cy— FElog(yg (

KLIC(f,9)

e Low values of KLIC mean the models are similar.
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Where does it come from?

How do we come up with these penalized regressions?

e Recall that OLS is a ML estimator in the case where ¢ is
normally distributed.

Likelihood Hg
Likelihood H,

B ((sup L(f|z): 6 € ©g
(sup L(A|x) : 0 € Q).

A(z)

D:—2ln<

e |f the models are nested then ©g C © and
dim(©) — dim(0g) = ¢ then as N — co we have that
D =% x*(q).
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Non-nested cases

Many cases we are interested in are not strictly nested

e Should | include x5 OR z3 in my regression? (partially
overlapping)

e Is the correct distribution f(y|x,8) normal or log-normal?
(non-overlapping)

©

N
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Non-nested cases

e Cox (1961) suggested the following (often infeasible
solution) by assuming that Fj is the true model.

; ; S (il 0)
LR(O,3)=L;(0) —Ly(3) =) In2=0 72
e Depending on which the true model is you could reject Fy

for G, and vice versa!
e Deriving the test statistic is hard (and specific to Fp)
because we must obtain E¢[ln M]
9(yilzi,y)

e Similar to AIC in that we are minimizing KLIC over Fy.



Model
Selection

Richard L.

Sweeney

Ridge
LASSO

Trade
Crime

Info criteria

Vuong Test
f(y|z, 0
o Eu |52 =0

— Epln(h/g)] — Ep[ln(h/f)] =0

e Instead of taking expectation with respect to one of two
distributions, we take it with respect to h(y|z) the
unknown but true distribution.

e Same as testing whether two densities (f, g) have same

KLIC.
e The main result is that (details in 8.5 of CT):

1 ~
ﬁLR(ev’?) _>d N{vaz]
’ 9(ylz, %)

79/ 82



Model
Selection

Richard L.

Sweeney

Ridge
LASSO

Trade
Crime

Info criteria

Non-nested cases

Many cases we are interested in are not strictly nested

e Should | include x5 OR z3 in my regression? (partially
overlapping)

e Is the correct distribution f(y|x,8) normal or log-normal?
(non-overlapping)

<]
o

©

N
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Non-nested cases

e Cox (1961) suggested the following (often infeasible
solution) by assuming that Fj is the true model.

N

L “ R f(yz‘ﬂ?“é)
LR(0,7) = Ly(0) = Lg(7) = ) In =g
(0,9) = Lg(0) — Lg(7) ; Y ol %)

e Depending on which the true model is you could reject Fy

for G, and vice versa!
e Deriving the test statistic is hard (and specific to Fp)
because we must obtain E¢[ln M]
9(yilzi,y)

e Similar to AIC in that we are minimizing KLIC over Fy.
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Vuong Test
f(y|z, 0
o Eu |52 =0

— Epln(h/g)] — Ep[ln(h/f)] =0

e Instead of taking expectation with respect to one of two
distributions, we take it with respect to h(y|z) the
unknown but true distribution.

e Same as testing whether two densities (f, g) have same

KLIC.
e The main result is that (details in 8.5 of CT):

1 ~
ﬁLR(ev’?) _>d N{vaz]
’ 9(ylz, %)
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